

AS and A level Further Mathematics Core Pure Mathematics

Practice Paper Proof

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 6 questions in this question paper. The total mark for this paper is 53 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. (i) Prove by induction that, for $n \in \mathbb{Z}^{+}$,

$$
\left(\begin{array}{rr}
1 & 0 \tag{6}\\
-1 & 5
\end{array}\right)^{n}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{4}\left(5^{n}-1\right) & 5^{n}
\end{array}\right)
$$

(ii) Prove by induction that, for $n \in \mathbb{Z}^{+}$,

$$
\sum_{r=1}^{n}(2 r-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right)
$$

2. (i) A sequence of numbers is defined by

$$
\begin{gathered}
u_{1}=6, \quad u_{2}=27 \\
u_{n+2}=6 u_{n+1}-9 u_{n} \quad n \geqslant 1
\end{gathered}
$$

Prove by induction that, for $n \in \mathbb{Z}^{+}$

$$
\begin{equation*}
u_{n}=3^{n}(n+1) \tag{6}
\end{equation*}
$$

(ii) Prove by induction that, for $n \in \mathbb{Z}^{+}$

$$
\begin{equation*}
\mathrm{f}(n)=3^{3 n-2}+2^{3 n+1} \quad \text { is divisible by } 19 \tag{6}
\end{equation*}
$$

(Total 12 marks)
3. Prove by induction that, for $n \in \mathbb{Z}^{+}$,

$$
\mathrm{f}(n)=8^{n}-2^{n}
$$

is divisible by 6 .
4. Prove by induction, that for $n \in \mathbb{Z}^{+}$,
(a) $\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)^{n}=\left(\begin{array}{rr}3^{n} & 0 \\ 3\left(3^{n}-1\right) & 1\end{array}\right)$
(b) $\mathrm{f}(n)=7^{2 n-1}+5$ is divisible by 12 .
5. A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$, is defined by

$$
u_{n+1}=4 u_{n}+2, \quad u_{1}=2 .
$$

Prove by induction that, for $n \in \mathbb{Z}^{+}$,

$$
u_{n}=\frac{2}{3}\left(4^{n}-1\right) .
$$

6. Prove by induction that, for $n \in \mathbb{Z}^{+}$,

$$
\mathrm{f}(n)=2^{2 n-1}+3^{2 n-1}
$$

is divisible by 5 .

