Write your name here		
Surname	Other n	ames
Pearson Edexcel GCE	Centre Number	Candidate Number
AS and A level Further Mathematics Core Pure Mathematics		
Practice Paper Proof		
You must have: Mathematical Formulae and S	Statistical Tables (Pink)	Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 6 questions in this question paper. The total mark for this paper is 53.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. (i) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^n - 1) & 5^n \end{pmatrix}$$
 (6)

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(4n^2-1)$$

(6)

(Total 12 marks)

2. (i) A sequence of numbers is defined by

$$u_1 = 6, \qquad u_2 = 27$$

 $u_{n+2} = 6u_{n+1} - 9u_n \qquad n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3^n (n+1) \tag{6}$$

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$

 $f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19

(6)

(Total 12 marks)

3. Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\mathbf{f}(n)=8^n-2^n$$

is divisible by 6.

(Total 6 marks)

4. Prove by induction, that for $n \in \mathbb{Z}^+$,

(a)
$$\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^n = \begin{pmatrix} 3^n & 0 \\ 3(3^n - 1) & 1 \end{pmatrix}$$

(b)
$$f(n) = 7^{2n-1} + 5$$
 is divisible by 12.

- (6)
(0)

(6)

(Total 12 marks)

5. A sequence of numbers $u_1, u_2, u_3, u_4, \ldots$, is defined by

$$u_{n+1} = 4u_n + 2, \quad u_1 = 2.$$

Prove by induction that, for $n \in \mathbb{Z}^+$,

$$u_n=\frac{2}{3}(4^n-1).$$

(5)

(Total 5 marks)

6. Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\mathbf{f}(n) = 2^{2n-1} + 3^{2n-1}$$

is divisible by 5.

(Total 6 marks)

TOTAL FOR PAPER: 53 MARKS